If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50^2+100^2=c^2
We move all terms to the left:
50^2+100^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+12500=0
a = -1; b = 0; c = +12500;
Δ = b2-4ac
Δ = 02-4·(-1)·12500
Δ = 50000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{50000}=\sqrt{10000*5}=\sqrt{10000}*\sqrt{5}=100\sqrt{5}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{5}}{2*-1}=\frac{0-100\sqrt{5}}{-2} =-\frac{100\sqrt{5}}{-2} =-\frac{50\sqrt{5}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{5}}{2*-1}=\frac{0+100\sqrt{5}}{-2} =\frac{100\sqrt{5}}{-2} =\frac{50\sqrt{5}}{-1} $
| x^{2}=185 | | 2b=-13 | | 21=-6x+4.8 | | t2=–55 | | 4d+10=-34 | | 3(x+1)(x-5)=0 | | -36=3(4+t)-12 | | 3^3x-6=27 | | -0.5x-1=17 | | x2+39=39 | | q/5+43=50 | | (6n-9)=(5n+13) | | 29+11u=7 | | 4(c-3)-15=-43 | | s2+36=0 | | 8y=3.60 | | 25^2+10^2=c^2 | | 8(w+6)+6w=-6 | | 8×1=3x+4 | | 5.00+0.65x=10.00+45x | | b/12-5=-3 | | a^2+10^2=25^2 | | 14x-39=10x+17 | | x/15=4/14 | | y2+37=67 | | -2+22x=4+21x | | 0,4w+1,6=2496 | | -8-2m=1-2m-3m | | -1x+60=80-5x | | s/4+23=26 | | 100+25x=500+25x | | 10+2s-4s=14 |